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Preamble: Who am | and What am | Doing Here?

* | am a Mathematician
* | like to analyze data arising from omic studies and face real data problem

* | already know some of you

* Design of complex pipelines for omics
data analysis and multi-omic data

integration

* Development of computational tools for e o
bioinformatics

* Development of novel statistical
approaches for the analysis of omics data

RT3 COSMONET || ADVISEtools




Omics data

In the last two decades high-throughput
technologies have revolutionized biomedical
research

* Huge amount of data due to decreasing
experimental costs

 Different omic technologies allow to elucidate
genome-wide cellular mechanisms

* The challenges shifted from data collection to
data analysis (and result interpretation)

- the dark side of the moon




Snap-shot of some results

Aim of the work was to study the regulatory mechanism AT S

between Thx1 and H3K4mel (i.e., to show that TBX1

positively regulate H3K4mel) and show that treatment RTICLE

of cells with Tranylcypromine (TCP) rebalance the loss

of H3K4mel and rescue the expression of a significant Rebalancing gene haploinsufficiency in vivo by
. : . targeting chromatin

number of genes, ameliorating the the cardiovascular e o o

phenotype (congenital heart disease), including & Antrio Baldin'

structural defects.

Congenital heart disease (CHD) affects eight out of 1,000 live births and is a major social and
health-care burden. A common genetic cause of CHD is the 22q11.2 deletion, which is the
basis of the homonymous deletion syndrome (22q11.2DS), also known as DiGeorge
@ Hokamet syndrome. Most of its clinical spectrum is caused by haploinsufficiency of Tbx7, a gene
encoding a T-box transcription factor. Here we show that Tbx1 positively regulates
monomethylation of histone 3 lysine 4 (H3K4mel) through interaction with and recruitment
of histone methyltransferases. Treatment of cells with tranylcypromine (TCP), an inhibitor
of histone demethylases, rebalances the loss of H3K4me1 and rescues the expression of
approximately one-third of the genes dysregulated by Tbx1 suppression. In Tbx1 mouse
mutants, TCP treatment ameliorates substantially the cardiovascular phenotype. These data
suggest that epigenetic drugs may represent a potential therapeutic strategy for rescue of
gene haploinsufficiency phenotypes, including structural defects.

N
Lsd1

Figure 5 | Cartoon showing a working model for Tbx1 interactions with chromatin and TCP
rebalancing effect. In the WT state (top row), Tbx1 promotes H3K4me1 deposition (small red
dots) through interaction with histone methyltransferases (HMTs). When Tbx1 is absent or
of lowered dosage (middle row), H3K4me1 enrichment is lowered because of reduced
recruitment of HMTs. TCP treatment (bottom row) re-establishes H3K4me1 by inhibiting the
activity of the Lsd1 demethylase. Blue cylinders indicate histone octamers.




An overview of the analysis
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Snap-shot of some results

We performed a transcriptomic and epigenomic study in patient-derived
B-cell lines to investigate the genome-scale effects of DNMT3B
dysfunction. We highlighted that altered intragenic CpG-methylation
impairs multiple aspects of transcriptional regulation, like alternative TSS
usage, antisense transcription and exon splicing. These defects
preferentially associate with changes of intragenic H3K4me3 and at
lesser extent of H3K27me3 and H3K36me3.

ICF syndrome: a rare autosomal recessive immunological/neurological disorder

- Immunodeficiency: agammaglobulinemia, respiratory tract infections (cause of premature death),
variable mental retardation

- Centromeric instability: gaps, breaks, deletions, isochromosomes, multiradial figures

- Facial anomalies: hypertelorism, flat nasal bridae, low set ears, epicanthic folds

Immunodeficiency, centromeric heterochromatin
instability of chromosomes 1, 9, and 16, and
facial anomalies: the ICF syndrome
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ABSTRACT

Hypomorphic mutations in DNA-methyltransferase
DNMT3B cause majority of the rare disorder Im-
munodeficiency, Centromere instability and Facial
anomalies syndrome cases (ICF1). By unspeci-
fied mechanisms, mutant-DNMT3B interferes with
lymphoid-sp: ific ys in immune re-

defe ingly, recent findings report
Ihat DNMT3B shapes intragenic CpG-methylation
of highly-transcribed genes. However, how the
DNMT3B-dependent epigenetic network modulates
transcription and whether ICF1-specific mutations
impair this process remains unknown. We performed
a transcriptomic and eplgenomlc study in patlent-
derived B-cell lines to il the
effects of DNMT3B dysfunction. We highlighted that
altered intragenic CpC. hylation impairs

of transcriptional r like alterna-
llve TSS usage, antisense transcription and exon
splicing. These defects preferentially associate with
changes of intragenic H3K4me3 and at lesser ex-
tent of H3K27me3 and H3K36me3. In addition, we
highlighted a novel DNMT3B activity in modulating
the self-regulatory circuit of sense-antisense pairs
and the exon skipping during alternative splicing,
through ir ing with RNA lecules. Strikingly,

altered transcription affects disease relevant genes,
as for instance the memory-B cell marker CD27
and PTPRC genes, providing us with biological in-
sights into the ICF1-syndrome pathogenesis. Our
genome-scale approach sheds light on the mecha-
nisms still poorly understood of the intragenic func-
tion of DNMT3B and DNA methylation in gene expres-
sion regulation.

INTRODUCTION

DNA methylation plays an important role in epigenetic sig-
naling, having an impact on gene regulation, chromatin
structure, development and disease. Generally, most mam-
malian genomes are largely methylated except at active
or ‘poised” promoters, enhancers and CpG islands, where
it has a repressive effect. Nevertheless, gene body DNA
methylation has been associated with high expression lev-
els (1).

DNA methylation is established and maintained by the
combined function of three active DNA methyltransferases
DNMT3A, DNMT3B and DNMTI (2). Although it has
been largely studied, much remains unknown regarding
how genomic DNA methylation patterns are determined in
human cells, and which are the mechanisms that guide re-
cruitment and activity of DNMTs in vivo (1). Mouse mod-
els suggest that although exhibiting overlapping functions,
DNMT3A and DNMT3B have unique expression patterns
and genomic targets during development (3-5). In line with



Differentially spliced gene with differential methylation associated to

the differentially included exon

An overview of the analysis
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Snap-shot of some ongoing projects

Patient-derived iPSCs and CRISPR-corrected isogenic
iPSCs as a model system to study ICF syndrome

iy
= -

DMN3B
Mutant patient Mutant patient Gene DMN3B-mutation
fibroblasts derived iPSCs corrected iPSCs
Correction of gene mutation
through CRISPR/Cas9
technology e
; * WGBS-seq
Control iPSC Patient-derived iPSC CRISPR/Cas9 .
RNA-seq
UN pR (homozygous mutation) c7; ¢35 — * H3K4me3 and
HDF-Wt (Public dataset) pG (compund heterozygous mutation)  ¢13; ¢50 H3K36me3
 DMNT3B
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Snap-shot of some ongoing projects
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The lesson learned so far....

Each type of omics data provides only a partial
view of cellular mechanismes.

Different omics data types requires different
computational methodology

Integration of different omics data types can
better elucidate the potential mechanisms that
lead to disease, or the treatment targets

Data integration is an extremely challenging and

emerging novel research area that is shifting from Omics data are multi-omics
naive data integration approaches to advanced

mathematical methods




Moreover, Omics data goes toward single cell

Single-cell

Bulk

Example: scRNA-seq experiments

Human body - trillions of specialized cells
with different functions

Cells are heterogeneous... different type or
subtypes

Cell of the same type can be at different
stages

Classical (Bulk) RNA-seq data analysis
requires hundred of thousand or millions of
cells

scRNA-seq allows to investigate individual cell
gene expression



What can | investigate with scRNA-seq?

Blood Cells

w7 Most relevant scRNA-seq applications include
1658 blOOdece”S...... ! Microscopy
e Study cellular heterogeneity
b . . _ By-cell analysis

* Discover novel cell populations

. Lymphocytes © & Flow ytomety . . . .
ool o ) = * Predict cell fate differentiation _

I vvidomas * Detect cell-type specific differentially By-gene

X Y expressed genes | analysis
= * Understand cell-type specific regulatory
networks -
2015 ©®©© ' .«’a o ‘ ( -~

e ° Other applications include

Proserpio & Mahata (2016) Cell Atlas: Human Cell Atlas, Mouse Cell Atlas,....



Naive Example
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Can scRNA-seq help immunology research ?

H Lnen et al.

Identifying novel
immune cell subtypes

Integrating single cell
multi-omic and spatial analysis
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Fig. 1 Mapping the immune cell atlas by single-cell RNA sequencing (scRNA-seq). The advanced technologies in scRNA-seq allows
construction of an immune cell atlas at the single-cell level. The immune cell atlas contains the detailed cellular and molecular signatures of
immune cells from different physiological as well as pathological contexts, tissues, individuals, and species. scRNA-seq can also be combined

Advanced single-cell RNA
sequencing (scRNA-seq)

f -
© ®
@ v ©
© @

Evolutionary comparison of
immune cells

REVIEW ARTICLE
Revolutionizing immunology with single-cell RNA sequencing

Haide Chen'??, Fang Ye' and Guoji Guo"****

Single-Cell Genomics: A Stepping Stone
for Future Immunology Discoveries

Amir Giladi' and Ido Amit"-*

Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
*Cormespondence: ido.amit@weizmann.ac.il
https://doi.org/10.1016/j.cell.2017.11.011

Immunology Driven by Large-Scale Single-Cell
Sequencing
Toméas Gomes,' Sarah A. Teichmann,'23* and Carlos Talavera-Lépez'2

REVIEW

Single-cell transcriptomics
to explore the immune system
in health and disease

with single-cell multi-omic analysis, and spatial gene expression analysis to promote our understanding of the immune system

Michael J. T. Stubbington,* Orit Rozenblatt-Rosen,>*
Aviv Regev,?>t1 Sarah A. Teichmann™*t1



ScRNA-seq overview

Wet experimental phase

Sample collection

Cell Dissociation
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scCRNA-seq data analysis overview

* Read alignment
* Count matrix
* Quality control and filtering
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scCRNA-seq data analysis overview

Read alignment

Count matrix

- O

Raw expression matrix

Quality control and filtering

—

Normalization and Batch

effect removal

Feature selection and

dimension reduction
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scCRNA-seq data analysis overview

e Read alignment
* Count matrix
e Quality control and filtering

* Normalization and Batch
removal

e Feature selection and dimension

reduction

* Downstream analysis

— —

effect
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(clustering, trajectory inference,

differential expression,...)

9 Data analysis : Extracting signal from data
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scCRNA-seq data analysis overview

* Read alignment ]
* Count matrix —
e Quality control and filtering —

* Normalization and Batch effect
removal

* Feature selection and dimension
reduction

 Downstream analysis (clustering,
trajectory inference, differential
expression,...)

* Interpretation (cell type
identification, marker
detection, novel cell type
functions, etc...)
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ScRNA-seq downstream analysis

* Clustering -

* Cluster annotation

* Compositional analysis

* Trajectory inference and branching
* Cell marker identification

* Differential expression

* Gene regulatory networks

* Others... continuosly emerging

scRNA-seq
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The algorithm is based on four main

EnsMAP-DP algorithm steps:

v’ Feature selection
v Dimension reduction

ensMAP-DP i
. v Clustering
a5 v’ Cluster ensemble

Based on the Maximum a

Raw Dimension reduction Individual clustering

e {SNE or UMAP MAP-DP Posteriori Dirichlet Process
» Mixture Model (MAP-DP)
¢ b — * It assumes that data follows a
Quality controlled Feature selection o . a o, Cluster ensemble Gaussian Infinite  Mixture
count matrix highly variable genes Q@y \"Kg, MCLA model
5 - * It estimates both cluster
— R o e B allocation and the number of
W ARl A clusters (cell populations)
: C\& tchfrough the posterior
inference
NS e mEtonSene S 8 — Pt 3§ * It uses a direct maximization

preprocessing

formulation to speed-up the
computation



EnsMAP-DP compared with other existing approaches

Klein dataset: 1886 differentiating embryonic stem cells, 4 time points

Annotation ensMAP DP, ARI: 0.94 ascend, ARI: 0.07 DIMMSC ARI: 0.78
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Conclusions

scRNA-seq allows to investigate cell
heterogeneity and development

scRNA-seq can be very useful in immunolgical
studies, cancer and cell development

scRNA-seq data are by far noisier and sparser
than bulk RNA-seq data, but there are many cells
- novel computational methods are required

Dataset size is increasing—> scalability of methods
in terms of memory and running time

Novel applications of scRNA-seq are continuolsy
proposed (i.e., spatial single cell)

And now.... Single cells are becoming multi-omics
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