Paolo Tieri Istituto per le Applicazioni del Calcolo 16 novembre 2020 #### Network Medicine - «Network medicine is the application of network science towards identifying, preventing, and treating diseases» - Biological networks - Protein-protein interaction networks (interactome) - Metabolic pathways - Disease networks (diseasome) - Epidemiological networks ## The network paradigm **Complex systems** are all around: society, economy, technological infrastructures and dynamics, living organisms It is difficult to derive their **collective behavior** from the knowledge of the **system's components** Their understanding can only be approached via **system thinking:** their mathematical description, prediction, and ultimately control is one of the **major intellectual and scientific challenges** Behind each complex system there is an **intricate network** that **encodes** the **interactions** between the system's components #### The network paradigm - Networks permeate science, technology, business and nature - We will never understand complex systems unless we develop a deep understanding of the networks behind them - Surprisingly, most networks are driven by common organizing principles #### Network Medicine - WHAT: Systems approach (network & systems medicine, systems biology) - WHY: Aims: better diagnoses, targeted therapies, better prognosis and prevention - WHY: **P4 medicine** (Predictive, Preventive, Personalised and Participatory) → **One Health** - HOW: Interdisciplinarity - HOW: Methods & data integration (physics, statistics, informatics; molecular, genetic, multi-omic data, conventional patient data, clinical-pathological parameters) - HOW: Network paradigm #### Network Medicine DATA! NETWORK! GRAPH THEORY COMPUTATIONAL RESOURCES MACHINE LEARNING, AI IMMUNOLOGISTS, CLINICIANS, BIOLOGISTS, PHARMA! ## Network biology & medicine - Binary protein-protein interaction - Reconstruction of the interactome - Mathematical analysis (centralities, hubs, bottlenecks) - Advanced statistical techniques (machine learning -> predictions) ### Charting the NF-kB Pathway Interactome Map Paolo Tieri^{1,2,3}*, Alberto Termanini¹, Elena Bellavista^{1,2}, Stefano Salvioli^{1,2}, Miriam Capri^{1,2}, Claudio Franceschi^{1,2} 1 CIG 'Luigi Galvani' Interdept Center, University of Bologna, Bologna, Italy, 2 Department of Experimental Pathology, University of Bologna, Bologna, Italy, 3 IAC-CNR Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy - A wider, systemic picture of the NF-kB signaling system, master regulator of inflammation - The complexity of the inflammatory process has escaped reductionist approaches - non-proportional kinetics - numerous and nested feedback loops ## Charting the NF-kB interactome map - NF-kB interactome: 622 proteins and 6115 interactions - 441 downstream genes - 13% of the identified NF- kB-regulated genes express proteins that play a direct role in the interactome - Several neglected but topologically central proteins may play a role in the activation of NF-kB mediated responses doi: 10.3389/fcell.2014.00059 # Multi-omic landscape of rheumatoid arthritis: re-evaluation of drug adverse effects Paolo Tieri 1,2 * †, Xiao Yuan Zhou 2†, Lisha Zhu 2 and Christine Nardini 2 * - ¹ IAC Istituto per le Applicazioni del Calcolo "Mauro Picone," CNR Consiglio Nazionale delle Ricerche, Rome, Italy - ² Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, Chinese Academy of Sciences Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China - 6 main data sources - 8 additional sources - Integrated at the functional level of PPIs for the molecular framing of RA - A single analytical picture of the known, yet complex, information about RA to provide a reliable platform for in silico hypothesis testing or recommendation on novel therapies ## Multi-omic landscape of RA - ~4000 selected molecules from 15 public databases, integrated and analyzed at the level of PPI - Platform to - support in the identification of novel drug targets - support in the identification of potential contraindication to novel therapies - support in the design of robust clinical trials - Virtual MTX treatment confirmed the 'impairment' of GI microbiome interface doi: 10.3389/fcell.2020.545089 #### **Designing a Network Proximity-Based Drug Repurposing Strategy for COVID-19** Paola Stolfi¹, Luigi Manni², Marzia Soligo², Davide Vergni¹ and Paolo Tieri^{1*} - Prior knowledge: - Experimentally validated viral-host proteins - tissue-specific gene expression data - Network analysis techniques: network propagation, connectivity significance ¹ National Research Council (CNR), Institute for Applied Computing (IAC), Rome, Italy, ² National Research Council (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy ## Data driven strategy for Covid-19 DR - Network diffusion - exploits the concept of heat diffusion, i.e., how the heat distribution spreads over time in a medium, here consisting of the PPI network - Connectivity significance - Rank aggregation - Tissue-specific gene expression filtering - Integrated functional analysis & pharmacological setting - Disease gene prioritization → drug repuroposing proposal | Fostamatinib | DB12010 | TBK1 | Nucleoplasm, vesicles | Virus release | Small
Molecule | Approved, investigational | Rheumatoid Arthritis
and Immune
Thrombocytopenic
Purpura (ITP) | RPS6KA6, commercial interpretation of the interpretatio | ttps://www.fda.gov/
rugs/resources-
nformation-approved-
rugs/fda-approves-
ostamatinib-tablets-itp | |--------------|---------|-------|---------------------------------------|-------------------------------------|--------------------------------------|---------------------------|---|--|---| | | | LYN | Golgi apparatus
Plasma
membrane | s, Virus entry
virus
assembly | r, Small
Molecule | Approved | Pulmonary fibrosis,
systemic
sclerosis-associated
interstitial lung
disease, and
non-small cell lung
cancer | KDR, LCK, SRC,
PDGFRA,
PDGFRB, FGFR1
FGFR2, FGFR3,
FLT1, FLT3, FLT4 | docs/label/2018/ | | Nintedanib | DB09079 | SRC | Plasma
membrane | Virus entry | Small
Molecule | Approved | Pulmonary fibrosis,
systemic
sclerosis-associated
interstitial lung
disease, and
non-small cell lung
cancer (NSCLC) | FLT1, KDR, FLT4,
PDGFRA,
PDGFRB, FGFR1
FGFR2, FGFR3,
FLT3, LCK, LYN, | //www.accessdata. | | | | FGFR1 | Plasma
membrane | Virus entry | Small
Molecule | Approved | Pulmonary fibrosis,
systemic
sclerosis-associated
interstitial lung
disease, and | FLT1, KDR, FLT4,
PDGFRA,
PDGFRB, FGFR1
FGFR2, FGFR3,
FLT3, LCK, LYN, | //www.accessdata. | | Pertuzumab | DB06366 | ERBB2 | Plasma
membrane | Virus entry | Monoclonal
antibody,
Inhibitor | Approved | Metastatic HER2-positive breast cancer. | | https:
//www.accessdata.
fda.gov/drugsatfda_
docs/label/2020/
125409s124lbl.pdf | ## Thank you!